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Abstract  

Background: The exposome constitutes a promising framework to better understand the effect of 

environmental exposures on health by explicitly considering multiple testing and avoiding 

selective reporting. However, exposome studies are challenged by the simultaneous consideration 

of many correlated exposures.  

Objectives: We compared the performances of linear regression-based statistical methods in 

assessing exposome-health associations.  

Methods: In a simulation study, we generated 237 exposure covariates with a realistic correlation 

structure, and a health outcome linearly related to 0 to 25 of these covariates. Statistical methods 

were compared primarily in terms of false discovery proportion (FDP) and sensitivity. 

Results: On average over all simulation settings, the elastic net and sparse partial least-squares 

regression showed a sensitivity of 76% and a FDP of 44%; Graphical Unit Evolutionary 

Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm a sensitivity 

of 80% and a FDP of 33%. The environment-wide association study (EWAS) underperformed 

these methods in terms of FDP (average FDP, 86%), despite a higher sensitivity. Performances 

decreased considerably when assuming an exposome exposure matrix with high levels of 

correlation between covariates. 

Conclusions: Correlation between exposures is a challenge for exposome research, and the 

statistical methods investigated in this study are limited in their ability to efficiently differentiate 

true predictors from correlated covariates in a realistic exposome context. While GUESS and 

DSA provided a marginally better balance between sensitivity and FDP, they did not outperform 

the other multivariate methods across all scenarios and properties examined, and computational 

complexity and flexibility should also be considered when choosing between these methods.  
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INTRODUCTION 

Environmental factors comprise a wide range of physical, chemical, biological and sociological 

stressors. As exemplified in twin- and migrant-studies, the environment may explain a relatively 

large fraction of the variation in the risk of many chronic diseases or continuous health traits 

(Rappaport et al. 2014; Willett 2002). Until now, studies in environmental epidemiology typically 

assessed the link between environmental exposures and health using approaches considering each 

environmental exposure separately, and therefore provided only a fragmented view of 

environment and health associations (Buck Louis et al. 2013; Rappaport 2011; Vrijheid et al. 

2014) (see (Greenland 1994; Lenters et al. 2014) for exceptions). Results from these approaches 

suffer from possible confounding due to (ignored) co-exposures, selective reporting, and 

publication bias (Patel and Ioannidis 2014; Slama and Vrijheid 2015). The exposome concept, as 

originally defined by Wild (2005), comprises the totality of environmental exposures from the 

prenatal period onwards, and argues for a holistic consideration of all exposures simultaneously 

(Wild 2012).  

Most previous studies relating the exposome to health relied on the Environment-Wide 

Association Study (EWAS, the association between each single exposure factor and the outcome 

being estimated separately) (Patel et al. 2010), sometimes followed by a multiple regression step 

that includes the selected predictors (Patel et al. 2013). Several multivariate regression-based 

statistical methods are now well established and allow accounting for a potential joint action of 

multiple exposures on health (Chadeau-Hyam et al. 2013). Sparse Partial Least Square (sPLS) 

(Chun and Keleş 2010) for instance has recently been used in a study of male fecundity (Lenters 

et al. 2014), while Elastic Net (ENET) (Zou and Hastie 2005) was used to link multiple 

environmental contaminants to birth weight (Lenters et al. 2015). To our knowledge, in the 
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context of exposome research, no other multiple regression statistical method has yet been 

applied. 

The statistical performances of these established statistical methods in an exposome context 

remain to be systematically assessed. In a recent simulation study (Sun et al. 2013), several 

multiple regression approaches were investigated for a limited number of exposures (N≤20), that 

were, at most, moderately correlated (Pearson correlation lower than 0.57). However in (future) 

exposome studies, many more covariates will likely be considered, and stronger correlations 

(typically greater than 0.6) are routinely observed in large exposome datasets, such as NHANES 

(Patel et al. 2010, Patel et al. 2013, Patel and Ioannidis 2014).  We therefore extended the work 

by Sun et al. to a realistic exposome context and aimed to compare statistical performances of 

linear regression-based statistical methods for future exposome studies. 

We generated exposure data using an empirical correlation structure between a large number of 

exposure covariates (i.e. 237), and assumed that 0 to 25 of these exposures linearly influenced a 

continuous health outcome without effect measure modification (i.e. interaction). The statistical 

methods compared included (i) the EWAS approach; (ii) EWAS followed by a multiple 

regression step including the identified hits; (iii) ENET, a penalized regression method; (iv) sPLS 

regression, a supervised dimension reduction method; (v) the Graphical Unit Evolutionary 

Stochastic Search (GUESS) algorithm, a computationally optimized Bayesian variable selection 

method (Bottolo et al. 2013), and (vi) the deletion/substitution/addition (DSA) sequential 

algorithm (Sinisi and van der Laan 2004). Statistical performances of selected approaches were 

systematically compared on the basis of six established criteria and two modified criteria, in order 

to evaluate both variable selection and point estimation. We additionally investigated the 
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sensitivity of the statistical performances of the methods with respect to modifications of the 

empirical correlation structure used to generate the exposures.  

METHODS 

Our simulation model relied on generating a matrix of exposure variables 𝑋𝑋 for a fictitious 

population. From this matrix, we generated the health outcome 𝑌𝑌 according to a linear regression 

model; seven scenarios were defined on the basis of the number of true predictors. We assessed 

the association between each simulated 𝑋𝑋 and 𝑌𝑌 using a preselected set of statistical methods, 

whose performances were assessed for each scenario and compared using the metrics detailed 

below. For each scenario, we simulated 100 independent datasets.  

Generation of the exposome 

In order to generate exposure variables with a realistic correlation structure, we relied on the 

existing INMA (INfancia y Medio Ambiente) mother-child cohort (Guxens et al. 2012), in which 

a total of 237 environmental factors have been assessed in mothers during pregnancy through 

questionnaires, geospatial modeling and biological monitoring. From the matrix of all pairwise 

correlations, we computed the closest positive definite matrix (Higham 2002), and used this 

estimate as our benchmark correlation matrix Σ (Figure S1). We used Σ to generate 𝑋𝑋, the 

exposome of a virtual study population of 1200 subjects (size of the study population of an 

ongoing European exposome project comprising the INMA cohort (Vrijheid et al. 2014)) from a 

mean-centered multivariate normal distribution: 𝑋𝑋~𝑁𝑁 0, Σ . As the cohort data contained 5 

binary variables (the others being continuous), we have dichotomized these 5 variables in our 

simulated datasets so as to replicate the proportion of positive responses observed in the original 

data.  
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Health outcome generation  

The health outcome 𝑌𝑌 was generated as a function of the exposome according to  

𝑌𝑌 = 𝛽𝛽!𝑋𝑋! + 𝜖𝜖
!"#

!!!

, 𝜖𝜖~𝑁𝑁 0,𝜎𝜎!  

Regression coefficients βi were all set to 0 except for the 𝑘𝑘 randomly selected variables that were 

assumed to be causally related to the outcome (hereafter referred to as "true predictors"), for 

which 𝛽𝛽! = 1. We considered seven scenarios, each defined by a different number of true 

predictors: 𝑘𝑘=0,1,2,3,5,10,25. The residual variance 𝜎𝜎 2 was defined such that the proportion of 

variance explained by the true predictors (𝑅𝑅!) equaled 3%×𝑘𝑘. With this constraint, within a 

given scenario the signal to noise ratio was the same in all simulations; and the power to select a 

true predictor in unadjusted analyses with uncorrelated true predictors was constant across 

scenarios (see Supplemental Material S1).  

Seven versions of these scenarios were generated. Set 1 corresponds to the scenarios defined 

above. Sets 2 and 3 aimed to assess the impact of the correlation level amongst true predictors 

which could raise identifiability issues. These scenarios differed from set 1 by ensuring that 

correlation among all true predictors was in absolute value <0.2 for set 2, and >0.5 for set 3. Sets 

4 and 5 aimed to assess the impact of the correlation structure of the whole exposome on the 

performances of the statistical methods; the scenarios differed from set 1 by not generating 𝑋𝑋 

from Σ  but for set 4 from the correlation matrix Σ!obtained by dividing the coefficients of Σ by 

two except on the diagonal; and for set 5 from Σ! obtained by multiplying the coefficients of Σ by 

two, upper-bounding coefficients by 1 and computing the closest semi-definite matrix. Set 6 

investigated deviating from the assumption of normally distributed exposures (i.e. including 
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potentially skewed distributions and outliers) by generating scenarios similarly to set 1 except 

with exposure data obtained by bootstrapping the actual environmental data from the INMA 

cohort. Finally, set 7 investigated the methods' robustness to unequal effect sizes by generating 

scenarios similarly to set 1 except with effect sizes (i.e. 𝛽𝛽!) for true predictors drawn from a 

uniform distribution in [0.5,1.5]. 

In all scenarios, the health outcome was generated as described above; for a given number of true 

predictors, the proportion of variance explained by the true predictors was therefore the same 

across all seven sets of scenarios. .  

Statistical methods to estimate the exposome-health association  

To estimate the association between 𝑌𝑌 and 𝑋𝑋, we used six linear regression-based statistical 

methods. 

Environment-wide association study 

The EWAS (Patel et al. 2010) relies on linear regression models fitted independently for each 

covariate. Statistical significance of the association between predictors and the response is 

assessed on the related 2-sided p-values after a correction for multiple comparisons was applied. 

As a benchmark, we considered the widely used Benjamini and Yekutieli (2001) correction to 

control the false discovery rate (FDR) at a desired level (here 5%). Additionally, covariates 

declared significant in the EWAS were included in a multiple linear regression model and 

retained if their 2-sided p-value was below 5% (Tzoulaki et al. 2012). This two-step approach is 

further referred to as EWAS-Multiple Linear Regression (EWAS-MLR). 

As sensitivity analyses, we tested several procedures to correct for multiple hypothesis testing: a 

permutation-based approach (Patel et al. 2010), the Benjamini and Hochberg (1995) procedure 
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and the Bonferroni (1936) correction. We also tested the EWAS method without applying a 

correction for multiple comparison as a way to illustrate what would happen if independent 

studies were applied for each exposure covariate separately. 

Elastic net  

The ENET (Zou and Hastie 2005) is a penalized regression model relying on a generalized linear 

framework, and uses a weighted mixture of the Least Absolute Shrinkage and Selection Operator 

(LASSO) (Tibshirani 1996) and ridge (Hoerl and Kennard 1970) penalties. The LASSO penalty 

promotes sparsity and performs variable selection through shrinkage: the lowest regression 

coefficients, corresponding to the least informative predictors, are attributed a zero value. The 

ridge penalty accommodates correlated variables and ensures numerical stability. The calibration 

of the tuning parameters, the overall penalty and mixing proportion for the two penalties were 

determined by minimizing the prediction root mean squared error (RMSE) using 10-fold cross-

validation (i.e. the data were partitioned into 10 subsets; for each of these subsets, the data were 

trained on the other 9 partitions and fitted on the given left-out subset over which the RMSE was 

estimated). To prevent over-fitting, the optimal calibration parameters were defined as those 

providing the most sparse model (as measured by the number of non-zero regression 

coefficients), among those yielding an RMSE within one standard error of the minimum RMSE 

(Meinshausen and Bühlmann 2006).  

Sparse partial least squares regression 

Partial least squares regression is a supervised dimension reduction technique that builds 

summary variables as linear combinations of the original set of variables. To ensure that the 

resulting lower-dimension representation of the data is relevant to the outcome of interest, the 

components are defined iteratively such that they explain as much of the remaining covariance 
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between the predictors and the (health) outcome as possible. The sPLS approach simultaneously 

yields good predictive performance and appropriate variable selection by creating sparse linear 

combinations of the original predictors (Chun and Keleş 2010). Sparsity is induced by including a 

penalty (η) in the estimation of the linear combination coefficients, i.e.  all coefficients with an 

absolute value lower than some fraction η of the maximum absolute coefficient are shrunk to 

zero. This procedure is called soft thresholding (Lenters et al. 2014). Only the first K components 

are included as covariates in a linear regression model. The values of K and  η were calibrated by 

minimizing the RMSE using 5-fold cross-validation (the default implementation). To complete 

model comparison, we generalized the reference implementation such that it also includes the 

empty model (K=0). 

Graphical Unit Evolutionary Stochastic Search 

As part of the Bayesian variable selection approaches, GUESS seeks for models that optimally 

predict the health outcome. Each model is defined by a unique combination of covariates (Bottolo 

and Richardsony 2010). Method estimation calls upon the identification of the most relevant 

models among the 2p (where p denotes the total number of covariates) possible combinations of 

covariates using an evolutionary Monte Carlo algorithm, which combines tempered multiple 

chains run together with genetic algorithms. These ensure both improved mixing of the sampler 

and exchange of information across chains (Bottolo et al. 2013). 

For each simulated data set, we ran the GUESS algorithm for 20,000 iterations and discarded the 

first 5,000 to account for burn-in. We set the number of chains to 3. To ease convergence and 

prevent extensive parameter calibration, noting 𝐸𝐸 the a priori expected model size and 𝜌𝜌 its 

variance, we set 𝐸𝐸 = 3 and 𝜌𝜌 = 3 for k<5, and 𝐸𝐸 = 𝑘𝑘 + 2 and 𝜌𝜌 = 5 for 𝑘𝑘 ≥ 5. As a 
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conservative measure, among the models visited we retained those associated with a posterior 

probability above 0.01.  

From the union of all exposures included in these models retained, we selected those with a 

marginal posterior probability of inclusion (MPPI; the probability that a variable is included in 

any of the models retained) greater than the (1-0.05/237) quantile of the MPPI distribution under 

the null hypothesis (i.e. where no covariate was associated to the outcome). 

The original goal of GUESS is to select the best combination(s) of covariates to predict the 

outcome. Its latest implementation (Liquet et al. 2015) allows posterior simulation of the 

coefficients estimates for a given model. However, in our simulation context where the true 

predictors are different from one dataset to the other, this indirect (i.e. conditional on variable 

selection) estimation procedure would require integrating posteriors over all models visited, 

which represents a prohibitive computational effort and is therefore incompatible with a direct 

coefficient estimation. As a conservative alternative, we used an additional ridge regression step 

with the variables selected by GUESS to estimate the methods' coefficients. This procedure is 

however likely to lower the quality of the estimates. 

Deletion-Substitution-Addition algorithm  

DSA is an iterative linear regression model search algorithm (Sinisi and van der Laan 2004). The 

set of potential models is limited by three user-specified constraints: the maximum order of 

interaction amongst predictors, the maximum power for a given predictor and the maximum 

model size. At each iteration, the following three steps are allowed: 1) removing a term, 2) 

replacing one term with another, and 3) adding a term to the current model. The search for the 

best model starts with the intercept model and identifies an optimal model for each model size. 
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The final model is selected by minimizing the value of the RMSE using 5-fold cross-validated 

data. We allowed no polynomial or interaction terms, and considered models including up to 40 

covariates (this number was never reached in our simulations). 

We used R implementations of  the  statistical methods under investigation, which are available 

in the packages stats, glmnet, spls, R2GUESS and DSA, respectively. The R codes developed by 

the authors and the correlation matrix Σ are provided in Supplemental Material S2, and 

Supplemental Material, Excel File Table S1, respectively. 

Statistical Performance Assessment 

The performances of each statistical method were evaluated using key criteria measuring the 

relevance of the variable selection and the quality of the point estimates. 

The sensitivity of a method was calculated for each scenario and simulation as the proportion of 

true predictors that were actually selected by the given method. The specificity was calculated the 

same way as the proportion of unrelated exposures that were not selected. 

The false discovery proportion (FDP) was defined as the proportion of selected variables that 

were not genuinely related to the outcome. When no variable was selected in a given run, we 

considered no variable was mistakenly selected and the FDP was given a value of 0%. FDP was 

not computed for scenarios with 0 true predictors. 

We investigated the accuracy of the estimated coefficients by means of the mean absolute bias 

calculated over the 237 coefficient estimates as 

1
237 |𝛽𝛽! − 𝛽𝛽!|

!"#

!!!
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where 𝛽𝛽! represents the coefficient used in the simulation, and 𝛽𝛽! the corresponding estimate. The 

mean absolute bias was also computed over the true predictors and over the unrelated exposures 

(i.e. non true predictors) separately.  

Owing to the possibly strong correlations between exposures, the argument could be made that 

not selecting a true predictor but instead picking up another highly correlated variable, should not 

be seen as a complete false selection, in the sense that the statistical method did not fully missed 

the signal. In order to account for this in our study, we defined alternative sensitivity and FDP 

measures accounting for such a partial agreement, based on the highest absolute  correlation 

estimated between the true predictors and the covariates selected by the  statistical method: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚

!∈!
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋! ,𝑋𝑋! ,

!∈!

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1−
1
𝑛𝑛!

𝑚𝑚𝑚𝑚𝑚𝑚
!∈!

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋! ,𝑋𝑋!) ,
!∈!

 

𝐴𝐴 is the set of true predictors and 𝐵𝐵 the set of variables selected by the method (also called hits), 

𝑘𝑘 and 𝑛𝑛!being their respective sizes. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 measures the average highest absolute correlation 

value between a true predictor and any variable selected by the method; 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 measures the 

average highest absolute correlation value between a selected variable and any of the true 

predictors. If the set of selected covariates includes all true predictors, these alternative metrics 

correspond to the classical sensitivity and FDP measures. Given that |𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋! ,𝑋𝑋! | ≤ 1, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

is always greater than sensitivity, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is always smaller than FDP. 

Extended variable selection protocol  

The argument could be made that in order to increase sensitivity and avoid missing important 

signals, one should not look at the selected exposures only but also consider all exposures highly 
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correlated (i.e. at a level greater than 𝛼𝛼,𝛼𝛼 varying between 0.6 and 0.9) to these hits. Resulting 

sensitivity and FDP was computed for this approach. 

RESULTS 

Correlation structure used for generating exposures  

The 𝚺𝚺 matrix is defined as the nearest positive definite matrix to the INMA correlation structure, 

and only marginally differed from its parent: 75% of the absolute differences were smaller than 

0.01 and 95% were smaller than 0.05. The large majority (83%) of absolute correlations between 

exposures in Σ were lower than 0.2, but 78% of the exposures were correlated at a level >0.6 with 

at least one other exposure (Figure S1).   

Performance assessment for scenarios set 1  

The simulation results of scenarios set 1 are presented in Figures 1 and 2 and Table 1.With true 

predictors drawn fully at random, the per-scenario average (standard error) absolute pairwise 

correlation amongst true predictors ranged between 0.12 and 0.15 (0.12 and 0.16).  

Over all investigated numbers of true predictors (i.e. k=0,1,2,3,5,10,25), the EWAS approach 

yielded a sensitivity greater than 90%, but a specificity as low as 46%  and a FDP greater than 

67% (due to the selection of a large number of exposures as measured by nB/𝑘𝑘 in Table 1). The 

alternative FDP ranged between 24% and 45% across simulations. The mean absolute bias was 

large (range, 0.02 to 0.47), but restricted to the true predictors only, it was the smallest of all 

statistical methods (≤0.10 vs. ≥0.30 for all other methods, Figure  S2).  
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When EWAS was followed by a multiple linear regression step (EWAS-MLR), the FDP 

improved over all scenarios (range, 30% to 80%), as well as the specificity (> 95% over all 

scenarios), at the cost however of a much lower sensitivity (<56% over all scenarios). The 

alternative sensitivity was between 38% and 87%, while the alternative FDP was between 16% 

and 34%. The mean absolute bias was large (9.00 on average over all scenarios). 

Results were similar while using other corrections for multiple testing (Figure S3). If no 

adjustment for multiple comparison was applied, the FDP obtained with this modified EWAS 

was greater than 89% and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 was greater than 42%.  

GUESS, sPLS, ENET and DSA methods all showed lower FDP than EWAS or EWAS-MLR. On 

average (5th percentile; 95th percentile) over all scenarios and on these four statistical methods, 

sensitivity was 78% (60% ; 91%), FDP was 39% (21% ; 62%) specificity was 96% (89% ; 

100%), alternative sensitivity was 95% (91% ; 99%) while alternative FDP was 12% (5% ; 20%). 

The mean absolute bias was 0.03 (0.00 ; 0.11), and 0.52 (0.32 ; 0.89) when restricted to the true 

predictors only (Figure  S2). These methods selected on average 1.79 times the number of true 

predictors (nB/𝑘𝑘 in Table 1). On average, DSA and GUESS proved a better compromise between 

sensitivity and FDR (average values: 80% and 33% respectively) than sPLS and ENET (average 

values: 78% and 44%, respectively), with DSA slightly favoring a high sensitivity while GUESS 

favored a low FDP (Figure 2). Yet, none of these statistical methods outperformed the others 

across all scenarios and indicators investigated. 

Over all methods, as the number of true predictors increased, the variable selection performances 

generally decreased: FDP and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 substantially increased across all statistical methods (on 

average, +29%, +9% between k=1 and k=25, respectively), sensitivity and AltSens slightly 
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decreased for all methods but EWAS-MLR and ENET (-7% and -4% between k=1 and k=25, 

respectively), and mean absolute bias increased (especially for the EWAS-based approaches). 

Sensitivity and AltSens largely decreased for EWAS-MLR, and largely increased for ENET. 

However, care should be taken in interpreting these trends since an increased number of true 

predictors is accompanied by an increased signal to noise ratio (R2 of the true model), but also by 

an increased risk that some true predictors are highly correlated. 

Performance assessment under alternative versions of the scenarios 

Scenarios in which true exposures were selected so that all their absolute pairwise correlations 

were <0.2 (set 2) or >0.5 (set 3) showed that the higher the level of correlation amongst the true 

predictors, the lower the sensitivity for the ENET, GUESS and DSA methods (and to a lower 

extent for the EWAS-MLR method); and the higher the mean absolute bias, mostly for the 

EWAS-based and DSA approaches (Figure S4). FDP was impacted for the ENET, sPLS and 

DSA methods, although not in a consistent direction. Apart from a large 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 decrease for the 

ENET method, the specificity and the alternative definitions of both sensitivity and FDP were 

poorly impacted. Note that selecting predictors with high pairwise correlation yielded an increase 

in the variance of the error term used in the simulations. 

Generating exposures from a correlation matrix with higher (scenarios set 4) or lower (scenarios 

set 5) levels of correlation (Figure 3) did not alter the methods' comparison, but had a major 

impact on the sensitivity, FDP and mean absolute bias: the higher the correlation among the 

exposures, the worse the performances of the methods. With correlation levels divided by two 

compared to scenarios set 1, the sensitivity was greater than 85% for all scenarios and statistical 

methods (except ENET for k<3) and FDP decreased on average by 23% compared to the same 
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scenarioin set 1. The alternative sensitivity and FDP and the specificity were less sensitive to the 

overall correlation of exposures, and less consistently affected. 

Deviation from the assumption of normally distributed exposures (scenarios set 6) led to 

analogous results compared to scenarios set 1, except for EWAS-MLR method showing better 

results for the bootstrapped data, yet not competing with the other methods (Figure S5).  

Considering varying effect sizes for true predictors (drawn from a uniform distribution in 

[0.5,1.5], scenarios set 7)  did not alter the methods comparison and had a limited impact on the 

statistical performances: sensitivity and AltSens were moderately lower (-10% to -7% on average 

compared to same scenario, set 1), and specificity, mean absolute bias (except for EWAS-based 

methods), FDP and AltFDP were not impacted  (Figure S6).  

Extended variable selection protocol  

In scenarios set 1, when augmenting the list of variables selected by a method with variables that 

were correlated to any these hits above some threshold 𝛼𝛼, a substantial increase in FDP was 

observed (except for EWAS-based methods for which FDP was already high), even for 𝛼𝛼 as high 

as 0.8 or 0.9 (Table S2).   

DISCUSSION 

We tested the ability of several established statistical approaches to identify, from a large set of 

correlated exposures, those causally related to a continuous health outcome. We mostly relied on 

sensitivity and false detection proportion to assess the statistical methods' performances: 

specificity was always high in our simulations (which can be at least partially attributed to our 

assumption that no more than 25 of the 237 exposure variables were associated with the outcome) 

making FDP a more discriminating criterion. In addition to the classical measures of sensitivity 
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and FDP, we introduced alternative definitions that account for the fact that false positives that 

are correlated to a true predictor might actually provide information that can be used to identify 

this true predictor.  

The EWAS-related approaches performed poorly under the scenarios investigated. EWAS 

captured a large number of (falsely positive) covariates (average FDP for scenarios set 1, 86%), 

irrespective of the procedure used for correcting multiple hypothesis testing (Benjamini and 

Hochberg, Benjamini and Yekutieli and permutation-based FDR procedures, or Bonferroni 

correction). This is mostly due to FDR procedures assuming the statistics (i.e. here, the p-values) 

are unbiased, while in our simulations there was a high potential for confounding due to 

independently fitting regression models on correlated exposures. However, compared to the other 

methods investigated, EWAS best estimated the true predictors coefficients values. When EWAS 

was followed by a multiple linear regression step (EWAS-MLR), a small proportion of true 

predictors were captured (average sensitivity for scenarios set 1, 33%). Yet, these two statistical 

methods still performed much better than if no correction for multiple comparisons was applied, 

which in the literature corresponds to the association of each exposure with the outcome being 

considered sequentially in different publications. For these two methods, the alternative FDP 

remained relatively high (32% on average for scenarios set 1), suggesting that in the investigated 

scenarios, many of the variables selected by these approaches were not strongly correlated to a 

true predictor.  

Using the ENET, sPLS, GUESS and DSA approaches, most true predictors were selected by the 

method (average sensitivity of 78% for scenarios set 1) and a substantial proportion of exposures 

were mistakenly suspected to be associated with the outcome (average FDP of 39% for scenarios 

set 1). For these four statistical methods, exposures that were mistakenly selected were on 
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average highly correlated to at least one of the true predictors (average 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 of 12% for 

scenarios set 1). Similarly, when a true predictor was not selected by these methods, it was likely 

that a highly correlated covariate was selected instead (average 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 of 95% for scenarios set 

1). None of the multivariate statistical methods tested clearly outperformed the others across all 

scenarios and properties examined. Globally, DSA and GUESS proved the best compromise 

between sensitivity and FDP, with DSA favoring highest sensitivity and GUESS favoring lowest 

FDP. Deviating from the assumption of normally distributed exposures or from the assumption of 

even effect sizes for true predictors did not alter the methods comparison. However, GUESS and 

DSA were the most affected by high correlation levels amongst true predictors (scenarios set 3), 

whereas EWAS and sPLS were less sensitive to this feature. Other factors such as ease of use, 

ability to force in confounders, accommodation for different study designs (e.g. longitudinal 

designs) or for non-linear exposure-response relations (e.g. using splines) may also be important 

for choosing between these methods. 

The argument has been made that selecting variables highly correlated to the true predictors 

should not be considered as a false selection per-se (Frommlet et al. 2012), and our alternative 

definitions of FDP and sensitivity were actually developed under this logic. As indicated by the 

relatively high values of these modified criteria for the four multivariate statistical methods, most 

of the true predictors are likely to belong to the set of exposures highly correlated to the variables 

selected. Considering the "hits" and their correlated covariates may thus be a way to capture the 

true predictors. There are several things to note when considering such an extended variable 

selection protocol and our findings in general: (i) in genetic studies, one can identify known and 

unknown correlated polymorphisms by utilizing the architecture of the genome; this may not 

apply to the exposome as correlations between exposures may arise from a variety of mechanisms 



Environ Health Perspect DOI: 10.1289/EHP172 
Advance Publication: Not Copyedited 

 

19 
 

(diet, social economic status, etc.), and there is no guarantee that selecting a correlated variable 

will provide useful information on the causal mechanism linking the true predictors to the 

outcome. As such, the distinction between true predictors and predictors correlated to those true 

predictors is challenging; (ii) lowering the threshold for selection (by including all predictors 

correlated to a selected predictor) will likely lead to an increased FDP under the usual definition, 

which may more than offset the benefits (in terms of an increased sensitivity). This is exemplified 

in our results for this protocol which suggested a substantial increase of the FDP when selecting 

variables correlated at a level greater than 0.8 with the hits (Table S2).  In that respect, it is 

important to stress that our alternative definition of FDP (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) is not the FDP that would 

result from the variable selection method induced by 𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 where predictors highly correlated 

to the selected ones would be additionally selected. Instead, it is the FDP that would result from 

using the original selection protocol, but counting correlated variables as “true predictors”, with a 

weight proportional to their correlation with the true predictor. 

Our simulation work extends that of Sun et al. (2013) to a more realistic context for the exposome 

in terms of number of exposures and of their correlation structure. We showed that the correlation 

structure under which the exposures are generated greatly impacts the performances of the 

statistical methods (Figure 3), meaning that the results from Sun et al. and of any simulation 

study with fixed correlation structure cannot be generalized in a straightforward way to the 

exposome context.  

Our study relied on several modeling assumptions which need to be taken into consideration 

while discussing the generality of our results. First, we assumed no effect measure modification 

of a covariate on the health outcome by any other covariate (departure from additivity), a 
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situation which may in practice not be true. Incorporating interactions terms would strongly 

increase the size of the modeling space (e.g. in this study, 27966 first order interactions) and 

would require extending our statistical methods to test for interactions, using dedicated 

techniques from all families investigated here (e.g. Lie and Zhang 2005). Withdrawing the 

restriction of binary effect sizes and incorporating varying effect sizes in the simulation did not 

alter the FDP; and it only artificially reduced the statistical power to detect weaker effects 

(reduction in sensitivity of 10% on average). This can be explained by a ceiling effect, i.e. the 

already high sensitivity could not be improved for exposures with higher than average effects to 

the same extent as it could be reduced for exposures with lower than average effects. Overall, the 

induced sensitivity loss was consistent across all methods and did not help in further 

discriminating the statistical methods under investigation. Importantly, we did not consider 

measurement error or misclassification in exposure covariates, while these have a potentially 

large impact on statistical power and bias, in particular in the case of classical type error (de 

Klerk et al. 1989; Rappaport et al. 1995, Perrier et al. in press). As a result, method performances 

may be hampered in real-life situations, but there is no a priori reason to think that statistical 

methods under investigation in this study would be differentially affected by these issues. We 

further assumed that exposures were normally distributed. Deviating from this assumption did not 

alter the performances of the methods. Finally, similarly to Sun et al. (2013), we used a limited 

set of statistical methods all borrowing from the linear regression framework. Alternative 

approaches such as profile regression, cluster analysis or other machine learning methods could 

complement this portfolio of approaches but could not be straightforwardly compared with our 

set of regression-based approaches. 
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CONCLUSIONS 

Relying on a realistic exposome structure, we screened a large set of correlated exposures out of 

which only a small number were directly associated with a continuous outcome. Our results 

suggests that the multivariate methods investigated should be preferred to univariate approaches 

to investigate the exposome: despite not achieving a low FDP, they show satisfactory statistical 

performances and represent different balances between sensitivity and FDP. Based on our 

performance metrics, we identified DSA and GUESS as providing somehow better performances, 

but this was not true across all scenarios and properties examined, and in real case analyses, 

methodological choices should also be guided by computational complexity and flexibility 

considerations such as the possibility to accommodate for confounders. Performances of the 

statistical methods were strongly influenced by the correlation among the exposome covariates, 

illustrating an issue inherent to the exposome research, namely that the statistical methods 

investigated are not able to efficiently differentiate between true predictors and correlated 

covariates. 
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Table 1. Statistical performances of the statistical methods for scenarios set 1. Results are given 

as mean [5th; 95th] percentiles over all scenarios (100 runs per scenario). 
Method Sensitivity AltSens FDP AltFDP Specificity nB/𝑘𝑘 Mean 

absolute bias 
Mean 

absolute bias 
for TP 

EWAS 0.96 
[0.84;1.00] 

0.97 
[0.93;1.00] 

0.86 
[0.75;0.98] 

0.37 
[0.27;0.59] 

0.72 
[0.18;1.00] 

11.27 
[0.00;40.02] 

0.59 
[0.02;2.12] 

0.04 
[0.00;0.16] 

EWAS-MLR 0.33 
[0.00;1.00] 

0.59 
[0.16;1.00] 

0.58 
[0.00;1.00] 

0.27 
[0.00;0.73] 

0.99 
[0.94;1.00] 

0.86 
[0.00;3.00] 

9.00 
[0.00;69.39] 

0.67 
[0.00;1.00] 

ENET 0.66 
[0.00;1.00] 

0.92 
[0.19;1.00] 

0.37 
[0.00;1.00] 

0.11 
[0.00;0.61] 

0.97 
[0.94;1.00] 

1.15 
[0.00;2.60] 

0.02 
[0.00;52.40] 

0.74 
[0.00;1.00] 

sPLS 0.86 
[0.80;1.00] 

0.96 
[0.87;1.00] 

0.52 
[0.50;0.97] 

0.16 
[0.08;0.51] 

0.90 
[0.25;1.00] 

3.59 
[0.00;29.52] 

0.03 
[0.02;2.12] 

0.46 
[0.00;0.20] 

GUESS 0.88 
[0.00;1.00] 

0.97 
[0.25;1.00] 

0.39 
[0.00;1.00] 

0.10 
[0.00;0.52] 

0.98 
[0.93;1.00] 

1.45 
[0.00;2.20] 

0.02 
[0.00;26.35] 

0.37 
[0.00;1.00] 

DSA 0.73 
[0.70;1.00] 

0.94 
[0.82;1.00] 

0.28 
[0.50;0.96] 

0.09 
[0.12;0.46] 

0.99 
[0.33;1.00] 

0.95 
[0.00;22.46] 

0.04 
[0.02;2.12] 

0.51 
[0.00;0.30] 

AltFDP: Alternative definition of the false discovery proportion (see methods section for definition); AltSens: 
Alternative definition of the sensitivity (see methods section for definition); DSA: Deletion/substitution/addition; 
ENET: Elastic net; EWAS: Environment-wide association study; EWAS-MLR: EWAS-Multiple Linear Regression; 
FDP: False Discovery Proportion; GUESS: Graphical Unit Evolutionary Stochastic Search; nB/𝑘𝑘: number of 
variables selected by the method (nB) over the number of true predictors (𝑘𝑘); sPLS: Sparse partial least-squares; TP: 
True Predictors. 
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Figures Legends  
 

Figure 1. Performances of the statistical methods for scenarios set 1. Model performances are 

summarized by their sensitivity (A), alternative sensitivity (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, see methods section) (B), 

false detection proportion (FDP) (C), alternative FDP (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, see method section) (D), 

specificity (E) and mean absolute bias (F). For each scenario defined by a number of true 

predictors varying from 0 to 25, statistics over the 100 runs are summarized by their mean (dot) 

and the variability of each statistics is summarized using the one standard error both ways from 

the average value (vertical dotted line). DSA: Deletion/substitution/addition; ENET: Elastic net; 

EWAS: Environment-wide association study; EWAS-MLR: EWAS-Multiple Linear Regression; 

GUESS: Graphical Unit Evolutionary Stochastic Search; sPLS: Sparse partial least-squares. 

Figure 2. Sensitivity and FDP for scenarios set 1. For each scenario defined by a number of true 

predictors varying from 0 to 25, for each statistical method, sensitivity and FDP over the 100 runs 

are summarized by their mean value. DSA: Deletion/substitution/addition; ENET: Elastic net; 

EWAS: Environment-wide association study; EWAS-MLR: EWAS-Multiple Linear Regression; 

GUESS: Graphical Unit Evolutionary Stochastic Search; sPLS: Sparse partial least-squares. 

Figure 3. Performances of the statistical methods according to the amount of correlation between 

the exposures. Model performances are summarized by their sensitivity (A), alternative 

sensitivity (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, see methods section) (B), false detection proportion (FDP) (C), alternative 

FDP (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, see method section) (D), specificity (E) and mean absolute bias (F). The full line 

connects results for exposures generated from a multivariate normal distribution with covariance 

matrix Σ (scenarios set 1);  the dashed line with covariance matrix Σ! (correlations divided by 

two compared to Σ, scenarios set 4) and the dotted with covariance matrix Σ! (correlations 

multiplied by two compared to Σ and upper bounded by 1, scenarios set 5). For each scenario 

defined by a number of true predictors varying from 0 to 25, statistics over the 100 runs are 

summarized by their mean (dot). DSA: Deletion/substitution/addition; ENET: Elastic net; 

EWAS: Environment-wide association study; EWAS-MLR: EWAS-Multiple Linear Regression; 

GUESS: Graphical Unit Evolutionary Stochastic Search; sPLS: Sparse partial least-squares. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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